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Abstract  
Objective: This study aims to develop and compare machine learning models for 

predicting fetal health status using Cardiotocogram (CTG) data, while addressing class 

imbalance and feature scaling issues. 

Methods: CTG data from 2126 records, classified by expert obstetricians into Normal, 

Suspect, and Pathological classes, was used. Synthetic Minority Over-sampling 

Technique (SMOTE) was applied to handle class imbalance, and Robust Scalar was 

used for feature scaling. Logistic Regression, Decision Tree, and Random Forest 

classifiers were trained and evaluated using various cross-validation techniques, 

including K-Fold, Stratified K-Fold, and 10-fold cross-validation. Hyperparameter 

optimization was performed using GridSearch. Model performance was assessed using 

accuracy, precision, recall, and F1-score metrics. 

Results: The Decision Tree classifier achieved the best performance with an accuracy 

of 93.2%, precision of 94%, recall of 93.2%, and F1-score of 93.4% using SMOTE and 

Robust Scalar on the 10-fold cross-validation set. The Random Forest classifier 

obtained an accuracy of 86.9%, precision of 90.3%, recall of 86.9%, and F1-score of 

87.8% under similar conditions. Logistic Regression showed an accuracy of 84%, 

precision of 88.3%, recall of 84%, and F1-score of 85.4% using SMOTE, Robust Scalar, 

and Stratified K-Fold cross-validation. Feature importance analysis revealed that 

histogram mean, % time with abnormal long-term variability, and abnormal short-term 

variability were the most influential features across the models. 

Conclusion: This study demonstrates the potential of machine learning models in 

predicting fetal health status from CTG data. Data balancing with SMOTE and feature 

scaling with Robust Scalar proved beneficial in improving model performance. The 

Decision Tree classifier outperformed other models, indicating its suitability for clinical 

decision support in assessing fetal well-being. Further research is needed to validate 

these findings and explore the integration of such models into clinical practice. 

Keywords: Machine Learning, Fetal Health Prediction, Cardiotocogram Data, Class Imbalance, Feature 

Scaling, Decision Tree Classifier 

Introduction  
Fetal health refers to the overall well-being and development of an unborn baby during 

pregnancy [1]. It encompasses various aspects, such as the fetus's growth, organ 

development, and the absence of congenital abnormalities or infections. Fetal health is 
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a critical component of a healthy pregnancy, as it lays the foundation for the baby's 

future physical and cognitive development [2]. 

 

Understanding fetal development is necessary for both expectant parents and healthcare 

providers. Parents can better appreciate the remarkable changes occurring within the 

womb, by knowing the key milestones and stages of fetal growth. This knowledge also 

helps them make informed decisions about prenatal care, nutrition, and lifestyle choices 

that can positively impact their baby's health. For healthcare professionals, a deep 

understanding of fetal development allows them to monitor the pregnancy effectively, 

identify potential issues, and provide timely interventions when necessary [3], [4]. 

The fetal environment plays a role in shaping an individual's future health, including 

their risk of developing chronic diseases later in life. Exposure to certain factors during 

pregnancy, such as maternal stress, poor nutrition, and environmental toxins, can have 

long-lasting effects on the fetus's health. These early exposures can influence the 

development of vital organs and systems, such as the brain, heart, and immune system, 

potentially setting the stage for chronic health issues in adulthood. 

For example, study [5] has linked maternal obesity and gestational diabetes to an 

increased risk of obesity, type 2 diabetes, and cardiovascular disease in the offspring. 

Similarly, exposure to air pollution during pregnancy has been associated with a higher 

risk of respiratory problems, such as asthma, in children. Healthcare providers can work 

with expectant mothers to optimize prenatal care and minimize potential risks by 

understanding the impact of the fetal environment on future health. This may include 

providing guidance on nutrition, stress management, and reducing exposure to harmful 

substances, ultimately promoting better health outcomes for the child throughout their 

life. 

Infant mortality has been a significant concern in healthcare systems around the world 

for many decades. Despite advances in developing tools to evaluate fetal well-being, 

interpreting cardiotocography (CTG) data remains challenging, especially in regions 

without expert obstetricians. Even in areas with medical professionals, individually 

diagnosing fetuses based on CTG measurements is time-consuming and inefficient. 

Artificial intelligence (AI) and machine learning (ML) have emerged as promising tools 

in fetal health prediction, offering automated analysis of ultrasound images and the 

integration of multiple data sources for risk assessment. AI-powered systems can 

analyze ultrasound images with remarkable speed and accuracy, detecting subtle 

abnormalities that may be missed by the human eye. These systems can identify markers 

for chromosomal disorders, congenital heart defects, and other structural anomalies, 

providing valuable insights for early intervention and treatment planning [6]. 

The integration of multiple data sources, such as maternal health records, genetic 

information, and environmental factors, further enhances the predictive capabilities of 

AI and ML in fetal health assessment. ML algorithms can process vast amounts of data, 
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identifying patterns and risk factors that may not be apparent through traditional 

analysis methods. This holistic approach to risk assessment enables healthcare 

providers to develop more comprehensive and personalized care plans, taking into 

account the unique circumstances of each pregnancy. As AI and ML continue to 

advance, their role in fetal health prediction is expected to grow, offering increasingly 

sophisticated tools for ensuring the well-being of both the mother and the unborn child 

[7], [8]. 

Machine learning models offer a solution to these challenges by allowing fetal health 

classifications to be made efficiently and without the presence of obstetricians. These 

models have shown high accuracy in their predictions, making them viable solutions to 

the difficulties surrounding fetal health assessment. Machine learning techniques are 

crucial in extracting knowledge and uncovering hidden insights from system data. They 

contribute to the development of efficient medical decision-making systems by utilizing 

various tools and technologies to construct algorithms for this purpose.  To effectively 

address these challenges, implementing an explainable model is considered the most 

efficient approach. An explainable model not only achieves accurate predictions but 

also provides insights into its decision-making process. This enables scientists and 

researchers to understand the model's reasoning. 

Machine learning models equip with the knowledge to communicate specific abnormal 

metrics to their patients, leading to improved patient care. For example, if the model 

predicts a pathological case for a fetus and indicates that the prediction is based on a 

low frequency of uterine contractions per second, a doctor can advise the patient on 

appropriate measures. Machine learning models provide transparency and 

accountability in the decision-making process, which is essential in a field where lives 

are at stake. These models also help to build trust between healthcare providers and 

patients, as patients can understand the reasoning behind the decisions made about their 

health. 

Prenatal screening, diagnostic tests, and monitoring techniques have undergone 

significant advancements, leading to accurate and comprehensive predictions of fetal 

health. These advancements allow healthcare providers to detect potential issues early 

on and intervene promptly for optimizing fetal outcomes. Early detection is necessary, 

as it enables medical professionals to provide timely treatment, modify prenatal care 

plans, and offer appropriate support to expectant parents. 

Innovations in prenatal screening, such as non-invasive prenatal testing (NIPT) and 

high-resolution ultrasounds, have contributed the field of fetal health assessment. These 

techniques give detailed look into the fetus's genetic makeup, anatomy, and overall 

development without posing significant risks to the pregnancy. Healthcare providers 

can now identify chromosomal abnormalities, structural defects, and other potential 

health concerns with greater precision. This allows for more informed decision-making 

and personalized care. 
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Data 
According to [9], [10], Cardiotocography (CTG) is a non-invasive and affordable 

technique used to monitor fetal well-being during pregnancy and labor. CTG machines 

use ultrasound technology to provide valuable insights into fetal heart rate (FHR) 

patterns, fetal movements, and uterine contractions. This information enables 

healthcare professionals to identify potential complications and intervene promptly for 

reducing the risk of maternal and infant morbidity and mortality. 

The dataset under consideration comprises 2,126 samples of features derived from 

Cardiotocogram examinations. A panel of three experienced obstetricians evaluated and 

categorized these features into three distinct classes: 1. Normal: CTG readings that fall 

within the expected range and indicate a healthy fetal state. 2. Suspect: CTG 

measurements that deviate slightly from the norm, warranting closer monitoring and 

potential further investigation. 3. Pathological: CTG results that exhibit significant 

abnormalities, suggesting the presence of fetal distress or other complications that 

require immediate medical attention. 

Figure 1. Target classes 

 

Methods 

Data Preprocessing  

The 'fetal_health' feature contains the classes we want to predict. This problem is a 

multiclass classification task with three categories: 

• 1: Normal 

• 2: Suspect 

• 3: Pathological 

The class distribution is imbalanced, which can pose challenges for the predictive 

model. If left unaddressed, the model might learn to perform better on class 1, which 

has a higher number of instances, compared to the other classes. One strategy to mitigate 

this issue is to balance the data and evaluate the benefits. 

Data Balancing with SMOTE 
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SMOTE (Synthetic Minority Over-sampling Technique) is an over-sampling method 

that aims to balance an imbalanced dataset by generating synthetic observations for the 

minority class [11]. These artificial minority class records are created based on 

similarity in the predictor space and added to the existing dataset. 

It is to note that SMOTE should be applied only to the training set, leaving the test set 

untouched for final prediction and evaluation [12]. This approach ensures that the 

model's performance is assessed on real, unseen data. 

Feature Selection 

Multiple features display correlations with the target variable 'fetal_health'. While it is 

often advisable to consider removing features that are highly correlated with others, as 

they may not substantially contribute to the predictive analysis and could potentially be 

a linear combination of the remaining features, this problem does not impose significant 

computational constraints. Therefore, the decision has been made to retain all features 

for subsequent analysis/  

Data Scaling with Robust scalar 

Data Scaling 

The features in the dataset have varying scales and orders of magnitude. To ensure that 

all features contribute equally to the predictive model and to avoid bias towards features 

with larger values, data scaling is necessary. In this case, we will employ the Robust 

Scaler, which is less sensitive to outliers compared to other scaling techniques like 

StandardScaler or MinMaxScaler. 

Robust Scaler is a data scaling technique that is less sensitive to outliers compared to 

other scaling methods, such as StandardScaler or MinMaxScaler. It is useful when the 

dataset contains outliers or when the distribution of the features is not Gaussian. 

Table 1. Characteristic of Robust Scaler 

Characteristic Description 

Scaling based on 

percentiles 

Robust Scaler scales the features using the interquartile range (IQR), 

which is the range between the 25th and 75th percentiles. This reduces 

the influence of extreme values or outliers [13]. 

Centering based 

on the median 

Instead of using the mean, Robust Scaler centers the data using the 

median value. The median is less sensitive to outliers, making it a robust 

measure of central tendency. 

Robust to 

outliers 

Robust Scaler is designed to minimize the impact of outliers on the 

scaled features by using the IQR for scaling and the median for 

centering. This ensures better model performance in the presence of 

outliers. 

Preserves the 

original 

distribution 

Unlike some other scaling techniques, Robust Scaler aims to maintain 

the original distribution of the data. This can be advantageous when the 

original distribution holds important information or when the model 

assumes a specific distribution. 
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Figure 2. use of Robust scalar 

 

It is necessary to maintain consistency between the training and test sets during the 

scaling process. The Robust Scaler should be fitted (i.e., the scaling parameters should 

be calculated) on the training set only. Subsequently, the same scaling parameters 

should be applied to both the training and test sets [14]. This approach guarantees that 

the model is evaluated on data that has the same scale as the data it was trained on, 

preventing any data leakage from the test set into the training process [15]. 

Figure 3.  Class distribution 

 

The dataset exhibits class imbalance, meaning that the number of instances in each class 

is not evenly distributed. In this case, class 1 has a significantly higher number of 

instances compared to the other classes. Class imbalance can pose challenges for 

predictive models, as they may learn to favor the majority class over the minority 

classes. 
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When a model is trained on an imbalanced dataset, it may achieve high overall accuracy 

by simply predicting the majority class most of the time. However, this does not 

necessarily mean that the model is performing well on the minority classes, which are 

often the classes of interest in real-world scenarios.  

Figure 4. Distribution of the features 
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Table 2. Consequences and techniques for solving Class Imbalance 

Consequences of Class Imbalance Techniques to Address Class 

Imbalance 

Biased model performance: 

The model may exhibit better performance metrics 

(e.g., accuracy, precision, recall) for the majority 

class compared to the minority classes. 

Oversampling the minority classes 

(e.g., using SMOTE) 

Undersampling the majority class 

Poor generalization: 

The model may struggle to generalize well on 

unseen data, especially when it comes to correctly 

classifying instances from the minority classes. 

Adjusting class weights during model 

training 

Using evaluation metrics (e.g., 

precision, recall, F1-score) that take 

class imbalance into account 

 

Figure 5. Correlation coefficient heatmap 

 

 

Table 3. Dataset split across train and test   
Fetal Health class  Count 

Train 1 1322 

Train 2 231 

Train 3 147 

Test 1 333 

Test 2 64 

Test 3 29 
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Prediction 

The analysis progressed through several stages, each designed to enhance the model's 

performance and understanding of the underlying data. Initially, a validation phase was 

conducted to identify the most suitable cross-validation method among cv=10, K-Fold, 

and Stratified K-Fold for normal, balanced, and scaled+balanced datasets. This step 

aimed to determine the approach that yielded the highest accuracy. 

Figure 6. prediction workflow of this study 

 

Once the optimal dataset and cross-validation method were identified, the focus shifted 

to optimizing the model's hyperparameters using GridSearch. This process involved 

systematically exploring various combinations of hyperparameters to find the 

configuration that maximized the model's performance. 

With the best hyperparameters determined, the model was then employed to predict the 

test variables, providing insights into its generalization capabilities. To assess the 

model's performance comprehensively, several metrics were calculated, including 

Precision, Recall, F1-Score, and Accuracy for both the training and test sets. Finally, an 

analysis of feature importance was conducted to identify the variables that had the most 

significant impact on determining the class labels. This information can be valuable for 

understanding the underlying factors driving the classification outcomes and can guide 

future data collection and feature engineering efforts. 

Predictive Models 

The models compared are: 

• Logistic Regression 
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• Decision Tree 

• Random Forest 

Logistic Regression is a statistical method used for classification tasks. Despite its 

name, logistic regression is actually a linear model, where the dependent variable is 

transformed using the logistic function to ensure predictions fall within the range. 

Mathematically, it models the probability that a given input belongs to a certain class, 

based on linear combinations of the input features. The model is trained by minimizing 

a loss function such as cross-entropy, using optimization techniques like gradient 

descent.   

A Decision Tree is a non-parametric supervised learning method used for classification 

and regression tasks. It recursively partitions the input space into regions, where each 

partition is determined by the value of a certain feature. At each node of the tree, a 

decision is made based on a feature value, leading to a split that maximizes information 

gain or minimizes impurity. Decision Trees are intuitive and easily interpretable, 

making them for understanding feature importance and explaining predictions. They 

are prone to overfitting, especially with deep trees, which can be mitigated using 

techniques like pruning or ensemble methods. 

Random Forest is an ensemble learning method that combines multiple decision trees 

to improve predictive performance and reduce overfitting. It operates by constructing a 

multitude of decision trees during training and outputs the mode of the classes 

(classification) or the mean prediction (regression) of the individual trees. Each tree is 

built using a random subset of the training data and a random subset of the features, 

introducing randomness that helps to decorrelate the trees and reduce variance. Random 

Forest is known for its robustness and high accuracy across a variety of datasets.  

Validation Techniques for the predictive model 

Two primary validation techniques were utilized to evaluate the model's ability to 

generalize to unseen data. The first approach, K-Fold Cross-Validation, involved 

partitioning the dataset into k subsets, with each fold containing a balanced distribution 

of classes. This method ensures that the model is trained and tested on different portions 

of the data, providing a more reliable estimate of its performance. 

The second technique, Stratified K-Fold Cross-Validation, is particularly suitable for 

imbalanced datasets. It operates similarly to K-Fold but maintains the class distribution 

within each fold, ensuring that the model is exposed to a representative sample of each 

class during training and testing. 

Both K-Fold and Stratified K-Fold Cross-Validation were implemented with 10 splits, 

striking a balance between computational efficiency and robustness. Additionally, the 

data was shuffled before splitting to mitigate any potential bias introduced by the 

original ordering of the instances. This randomization helps to ensure that the model's 

performance is not unduly influenced by any specific patterns or trends present in the 

dataset. 
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Data Preparation 

Figure 7. Feature distribution After SMOTE AND Robust Scalar 

 

To assess the influence of different data preprocessing approaches on the model's 

performance, three distinct strategies were implemented. The first approach involved 
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training and evaluating the model using the original, unmodified dataset. This served as 

a baseline to gauge the model's performance without any data manipulation. 

The second strategy employed the Synthetic Minority Over-sampling Technique 

(SMOTE) to address the class imbalance present in the dataset. SMOTE generates 

synthetic samples for the minority classes, effectively balancing the class distribution. 

This approach aims to prevent the model from being biased towards the majority class 

and to improve its ability to recognize and classify instances from the minority classes. 

The third approach combined feature scaling with data balancing. The features were 

scaled using the Robust Scalar, which is less sensitive to outliers compared to other 

scaling methods. Scaling ensures that all features contribute equally to the model, 

preventing features with larger magnitudes from dominating the learning process. 

Subsequently, SMOTE was applied to the scaled dataset to address class imbalance. 

This combined approach tackles both feature scale discrepancies and class imbalance 

simultaneously. 

Results  

Logistic regression  

The effect of data scaling on the performance of the logistic regression model appears 

to be generally positive across all validation strategies. Scaling the data seems to help 

the algorithm converge faster and achieve better generalization, leading to improved 

performance. However, the impact of data balancing using SMOTE is mixed. In some 

cases, such as when using SMOTE with K-Fold and STK-Fold validation, the 

performance decreases compared to the original or scaled data. On the other hand, when 

using SMOTE with cv=10 validation, there is a marginal improvement in performance. 

This variability suggests that the effectiveness of SMOTE may be dependent on the 

specific characteristics of the dataset and the chosen validation strategy. 

Table 4. Results of Logistic Regression  
Logistic 

Regression 

Logistic 

Regression 

Robust Scaled 

Logistic 

Regression 

Smote 

Logistic Regression 

after SMOTE and 

Robust Scaler 

K-Fold 0.8800 0.8941 0.8276 0.8923 

STK-Fold 0.8776 0.8906 0.8268 0.8936 

cv=10 0.8824 0.8953 0.8255 0.8911 

 

When comparing the validation strategies, both K-Fold and Stratified K-Fold (STK-

Fold) exhibit similar performance trends across different data preprocessing techniques. 

This consistency indicates that the choice between these two strategies may not have a 

significant impact on the observed performance differences in this particular scenario. 

The decision to use Stratified K-Fold suggests that maintaining class balance within 

each fold was considered important in this context. 
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Table 5. Accuracy scores 

Metric Value 

Accuracy (Train) 0.899 

Accuracy (Test) 0.843 

Precision (Test) 0.883 

Recall (Test) 0.843 

F1-Score 0.856 

Table 6. Accuracy scores across classes   
Precision Recall F1-Score Support 

Class 1 0.98 0.86 0.92 333 

Class 2 0.54 0.77 0.63 64 

Class 3 0.54 0.76 0.63 29 

Table 7. Accuracy scores after cross validation 

Metric Value 

Accuracy 0.843 

Precision 0.883 

Recall 0.843 

F1-Score 0.856 

Validation STK-Fold 

Data Smote+Scaled 

The results in tables 5, 6, 7 showcase the performance of a classification model 

evaluated using various metrics and a Stratified K-Fold (STK-Fold) validation strategy 

on a dataset that has been preprocessed with SMOTE oversampling and feature scaling. 

The model achieves an accuracy of 0.899 on the training set and 0.843 on the test set. 

This indicates that the model is able to correctly classify approximately 84% of the 

instances in the test set. The relatively small difference between the training and test 

accuracies suggests that the model is not severely overfitting to the training data. 

The precision score of 0.883 indicates that when the model predicts a positive class, it 

is correct about 88% of the time. The recall score of 0.843 means that the model 

correctly identifies around 84% of the actual positive instances. The F1-score, which is 

the harmonic mean of precision and recall, is 0.856, providing a balanced measure of 

the model's performance. 

It is evident that the model performs exceptionally well on Class 1, with a high precision 

(0.98), recall (0.86), and F1-score (0.92). This suggests that the model is highly accurate 

in identifying instances of Class 1 and has a low false positive rate. However, the 

performance on Class 2 and Class 3 is comparatively lower, with precision, recall, and 

F1-scores around 0.54, 0.77, and 0.63, respectively. This indicates that the model may 

struggle more with correctly classifying instances of these classes, potentially due to 

class imbalance or the complexity of distinguishing between these classes. 

The use of SMOTE oversampling and feature scaling as preprocessing techniques aims 

to address potential class imbalance and ensure that the features are on a similar scale. 

The STK-Fold validation strategy helps assess the model's performance by maintaining 

the class distribution across the folds, providing a more reliable estimate of the model's 

generalization ability. 
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Table 8. Top 20 features along with their corresponding coefficients in Logistic regression  
Feature Coefficient 

0 accelerations 1.592702 

1 histogram_mode 1.529701 

2 uterine_contractions 0.802553 

3 histogram_median 0.778095 

4 light_decelerations 0.509800 

5 histogram_width 0.427798 

6 mean_value_of_short_term_variability 0.214358 

7 mean_value_of_long_term_variability 0.208817 

8 histogram_number_of_zeroes 0.042682 

9 severe_decelerations 0.000371 

10 prolongued_decelerations -0.047194 

11 fetal_movement -0.056091 

12 histogram_number_of_peaks -0.207527 

13 histogram_mean -0.511047 

14 histogram_tendency -0.524506 

15 %_time_with_abnormal_long_term_var -0.735621 

16 histogram_min -0.800067 

17 histogram_max -0.867143 

18 baseline value -1.225771 

19 histogram_variance -1.628323 

 

Decision tree 

Table 9. Decision tree results  
Decision 

Tree 

Decision Tree 

scaled 

Decision Tree 

SMOTE 

Decision Tree 

SMOTE+Robust Scaled 

K-Fold 0.9112 0.9112 0.9581 0.9581 

STK-

Fold 

0.9118 0.9135 0.9592 0.9592 

cv=10 0.9118 0.9135 0.9597 0.9594 

The results provided show the performance of a Decision Tree classifier under different 

data preprocessing techniques and validation strategies. The preprocessing techniques 

include scaling, SMOTE oversampling, and a combination of SMOTE and robust 

scaling. The validation strategies used are K-Fold, Stratified K-Fold (STK-Fold), and 

10-fold cross-validation (cv=10). 

Table 10. Performance scores across classes  
precision recall f1-score support 

1 0.98 0.93 0.96 333 

2 0.75 0.89 0.81 64 

3 0.82 0.97 0.89 29 

accuracy 
  

0.93 426 

macro avg 0.85 0.93 0.89 426 

weighted avg 0.94 0.93 0.93 426 

Applying SMOTE oversampling significantly improves the model's performance. The 

accuracy scores increase from around 0.91 without SMOTE to approximately 0.96 with 

SMOTE, regardless of the validation strategy. This suggests that addressing the class 
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imbalance through oversampling helps the Decision Tree classifier to better learn and 

distinguish between the different classes. 

The impact of scaling alone (without SMOTE) on the model's performance is minimal, 

as the accuracy scores remain nearly the same with or without scaling. However, when 

scaling is applied in combination with SMOTE (SMOTE+Robust Scaled), the model 

maintains its high performance, indicating that scaling can be beneficial in conjunction 

with oversampling. 

The choice of validation strategy does not seem to have a significant impact on the 

model's performance, as the accuracy scores are consistent across K-Fold, STK-Fold, 

and cv=10 for each preprocessing technique. This suggests that the model's 

performance is robust and not highly sensitive to the specific validation approach used. 

In class-wise performance metrics (precision, recall, and f1-score), the model performs 

exceptionally well for Class 1, with high scores across all metrics. The performance for 

Class 2 and Class 3 is also strong, with precision scores of 0.75 and 0.82, recall scores 

of 0.89 and 0.97, and f1-scores of 0.81 and 0.89, respectively. These results indicate 

that the model is able to effectively distinguish between the different classes, despite 

the potential challenges posed by class imbalance. 

After performing hyperparameter optimization, the best model achieved an impressive 

accuracy score of 94.98%. The optimal hyperparameters found through this process 

include using the entropy criterion, a maximum depth of 9, a minimum of 1 sample per 

leaf, and a minimum of 4 samples required to split an internal node. These settings strike 

a balance between model complexity and generalization ability, allowing the Decision 

Tree classifier to capture the underlying patterns in the data while avoiding overfitting. 

 

Table 11. Feature importance in decision tree 

Feature Importance 

histogram_mean 0.235199 

mean_value_of_short_term_variability 0.199540 

%_time_with_abnormal_long_term_var 0.197643 

abnormal_short_term_variability 0.112131 

prolongued_decelerations 0.075840 

histogram_median 0.054215 

accelerations 0.025330 

baseline value 0.014523 

histogram_number_of_peaks 0.014520 

histogram_mode 0.014317 

fetal_movement 0.013112 

histogram_max 0.009530 

histogram_variance 0.008829 

histogram_tendency 0.007238 

uterine_contractions 0.006143 

light_decelerations 0.004501 

histogram_width 0.003507 
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mean_value_of_long_term_variability 0.002500 

histogram_number_of_zeroes 0.001380 

 

Random forest  

Table 12. Random forest results 

Method RFC RFC scaled RFC smote RFC smote+scaled 

K-Fold 0.9400 0.9394 0.9796 0.9796 

STK-Fold 0.9435 0.9441 0.9786 0.9786 

Cross-Validation 0.9347 0.9347 0.9793 0.9793 

Table 13. Accuracy scores across classes  
precision recall f1-score support 

1 0.98 0.86 0.92 333 

2 0.59 0.88 0.70 64 

3 0.68 0.90 0.78 29 

accuracy 
  

0.87 426 

macro avg 0.75 0.88 0.80 426 

weighted avg 0.90 0.87 0.88 426 

 

The tables 12 and 13 show the performance of a Random Forest Classifier (RFC) under 

different data preprocessing techniques and validation strategies. The preprocessing 

techniques include scaling, SMOTE oversampling, and a combination of SMOTE and 

scaling. The validation strategies used are K-Fold, Stratified K-Fold (STK-Fold), and 

cross-validation. Applying SMOTE oversampling significantly improves the model's 

performance. The accuracy scores increase from around 0.94 without SMOTE to 

approximately 0.98 with SMOTE, regardless of the validation strategy. This suggests 

that addressing the class imbalance through oversampling helps the Random Forest 

Classifier to better learn and distinguish between the different classes. 

The impact of scaling alone (without SMOTE) on the model's performance is minimal, 

as the accuracy scores remain nearly the same with or without scaling. However, when 

scaling is applied in combination with SMOTE (SMOTE+Scaled), the model maintains 

its high performance, indicating that scaling can be beneficial in conjunction with 

oversampling. 

The choice of validation strategy has a slight impact on the model's performance, with 

STK-Fold and K-Fold yielding slightly higher accuracy scores compared to cross-

validation. However, the differences are relatively small, suggesting that the model's 

performance is robust across different validation approaches. 

 

After performing hyperparameter optimization, the best-performing Random Forest 

Classifier model achieved an accuracy score of approximately 90.4%. The optimal 

hyperparameters found include using the entropy criterion, a maximum depth of 9, 

selecting the square root of the total number of features at each split 

(max_features='sqrt'), limiting the maximum number of leaf nodes to 9, and using 1000 

decision trees in the ensemble (n_estimators=1000).  
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Table 14. Feature Importance in random forest 

Feature Importance 

% Time with Abnormal Long Term Var 0.136700 

Histogram Mean 0.126976 

Abnormal Short Term Variability 0.117263 

Histogram Median 0.095905 

Prolonged Decelerations 0.095337 

Accelerations 0.091215 

Mean Value of Short Term Variability 0.076574 

Mean Value of Long Term Variability 0.062427 

Histogram Mode 0.061983 

Baseline Value 0.033225 

Histogram Variance 0.032504 

Uterine Contractions 0.015113 

Histogram Min 0.014982 

Histogram Width 0.014270 

Light Decelerations 0.009128 

Histogram Max 0.006681 

Fetal Movement 0.003883 

Histogram Tendency 0.003112 

Histogram Number of Peaks 0.002169 

Severe Decelerations 0.000553 

It can be observed that the Random Forest Classifier achieves an accuracy of 0.869, 

precision of 0.903, recall of 0.869, and an F-score of 0.878 using cross-validation and 

SMOTE+Robust Scaled data. These scores are slightly lower than the Decision Tree 

model but higher than the Logistic Regression model. 

The model performs exceptionally well for Class 1, with high precision (0.98), recall 

(0.86), and F1-score (0.92). The performance for Class 2 and Class 3 is also good, with 

precision scores of 0.59 and 0.68, recall scores of 0.88 and 0.90, and F1-scores of 0.70 

and 0.78, respectively. These results indicate that the model is able to effectively 

distinguish between the different classes, although there is room for improvement in the 

precision scores for Class 2 and Class 3. 

Table 15. performance of the 3 models 

Model Accuracy Precision Recall F-

score 

Validation Data 

Logistic 

Regression 

0.84 0.883 0.84 0.854 STK-Fold Smote+Scaled 

Decision Tree 0.932 0.94 0.932 0.934 CV=10 Smote+Scaled 

Random Forest 0.869 0.903 0.869 0.878 K-Fold Smote+Scaled 

In the logistic regression model, the top 20 features and their corresponding coefficients 

provide insights into the impact of each feature on the prediction. Features with positive 

coefficients, such as "accelerations," "histogram_mode," and "uterine_contractions," 

have a positive influence on the prediction, meaning that higher values of these features 

are associated with a higher probability of the positive class. On the other hand, features 

with negative coefficients, such as "histogram_variance," "baseline value," and 

"histogram_max," have a negative impact on the prediction, indicating that higher 

values of these features are associated with a lower probability of the positive class. 
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The decision tree model provides feature importance scores, which represent the 

relative importance of each feature in making predictions. The top features in the 

decision tree model include "histogram_mean," 

"mean_value_of_short_term_variability," "%_time_with_abnormal_long_term_var," 

and "abnormal_short_term_variability." These features play a significant role in the 

decision-making process of the tree, with higher importance scores indicating a greater 

influence on the final predictions. 

Similarly, the random forest model also provides feature importance scores. The top 

features in the random forest model are "% Time with Abnormal Long Term Var," 

"Histogram Mean," "Abnormal Short Term Variability," "Histogram Median," and 

"Prolonged Decelerations." These features are considered the most informative and 

have the highest impact on the predictions made by the ensemble of decision trees in 

the random forest. 

Comparing the feature importance across the three models, we can observe some 

commonalities and differences. "histogram_mean" appears as a top feature in both the 

decision tree and random forest models, indicating its significance in making 

predictions.  "%_time_with_abnormal_long_term_var" is highly important in the 

decision tree and random forest models but has a negative coefficient in the logistic 

regression model.  "accelerations" has a high positive coefficient in logistic regression 

and is also considered important in the random forest model. 

"mean_value_of_short_term_variability" is ranked high in the decision tree model but 

has a relatively lower coefficient in logistic regression. "prolongued_decelerations" has 

a negative coefficient in logistic regression but is considered important in both the 

decision tree and random forest models. 

These differences in feature importance across models can be attributed to the different 

ways each model handles and interprets the features. Logistic regression considers the 

linear relationship between the features and the log-odds of the outcome, while decision 

trees and random forests capture non-linear relationships and interactions between 

features. 

Conclusion  
Infant mortality remains a significant concern in healthcare systems worldwide, and 

machine learning models offer a solution to the challenges surrounding fetal health 

assessment. Explainable models, in particular, provide transparency and accountability 

in the decision-making process, helping to build trust between healthcare providers and 

patients.  

This study demonstrates the potential of machine learning models, particularly the 

Decision Tree classifier, in predicting fetal health status using Cardiotocogram (CTG) 

data. By applying feature scaling with Robust Scalar, the models achieved promising 

performance metrics, with the Decision Tree classifier outperforming the Random 

Forest and Logistic Regression models. The identification of influential features, such 

as histogram mean, % time with abnormal long-term variability, and abnormal short-
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term variability, provides insights into the key factors contributing to fetal health 

assessment. 

The class imbalance problem is a common challenge in machine learning, particularly 

in medical datasets where certain conditions or outcomes may be relatively rare 

compared to others. In the case of the CTG dataset used in this study, the original class 

distribution was imbalanced, meaning that the number of instances in each class 

(Normal, Suspect, and Pathological) was not equal. Imbalanced class distribution can 

lead to biased models that favor the majority class and perform poorly in predicting the 

minority classes, which are often of greater interest in clinical settings. 

To address the class imbalance issue, the researchers employed the Synthetic Minority 

Over-sampling Technique (SMOTE). SMOTE is a popular oversampling method that 

generates synthetic examples of the minority classes by interpolating between existing 

minority instances. By creating additional synthetic examples, SMOTE aims to balance 

the class distribution and provide the machine learning models with a more 

representative dataset for training. 

While SMOTE has been widely used and has shown success in mitigating class 

imbalance, it is important to recognize its limitations. SMOTE generates synthetic 

examples based on the existing minority instances, assuming that the interpolation 

between them captures the underlying distribution of the minority classes. However, 

this assumption may not always hold true, especially if the minority classes have 

complex or non-linear decision boundaries. In such cases, SMOTE may generate 

synthetic examples that do not accurately represent the true distribution of the minority 

classes, leading to unrealistic or noisy instances. 

Moreover, SMOTE's interpolation approach may introduce some bias into the dataset. 

By creating synthetic examples, SMOTE may amplify certain patterns or characteristics 

present in the existing minority instances, potentially overemphasizing certain regions 

of the feature space. This bias can affect the model's learning process and lead to 

overoptimistic performance on the minority classes during training and evaluation. 

While SMOTE can help improve the model's performance on the minority classes, it 

does not guarantee a perfect representation of the true underlying distribution. The 

generated synthetic examples may not capture all the intricacies and variability present 

in real-world data. Therefore, the results obtained using SMOTE should be interpreted 

with caution, and the models should be validated on independent, unseen data to assess 

their generalization ability. 

To mitigate the potential biases introduced by SMOTE, studies can consider using other 

advanced oversampling techniques, such as Adaptive Synthetic (ADASYN) or 

Generative Adversarial Networks (GANs), which aim to generate more realistic and 

diverse synthetic examples. Additionally, using a combination of oversampling and 

undersampling techniques, such as SMOTE with Tomek Links or SMOTE with Edited 

Nearest Neighbors (ENN), can help balance the class distribution while removing noisy 

or overlapping instances. 
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The interpretation of feature importance rankings is a crucial aspect of understanding 

the results of machine learning models. However, it is important to recognize that the 

interpretation requires domain knowledge to assess the relevance and practicality of the 

identified features in the context of the problem being addressed. 

Domain expertise plays a big role in determining whether the top features identified by 

the models make sense and align with the underlying principles and mechanisms of the 

specific domain. For example, in a healthcare-related problem, a medical expert would 

be best suited to evaluate if the top features, such as "accelerations," "histogram_mode," 

or "uterine_contractions," have a meaningful connection to the outcome being 

predicted. They can assess whether these features are clinically relevant, have a 

plausible biological or physiological basis, and align with established medical 

knowledge. 

Without sufficient domain expertise, it may be challenging to make such assessments. 

A data scientist or machine learning practitioner who lacks the necessary domain 

knowledge may struggle to determine if the identified features are truly informative or 

if they are merely statistical artifacts. They may not have the background to evaluate 

the feasibility or practicality of using certain features in real-world decision-making 

processes. 

Domain expertise can help identify potential confounding factors or variables that may 

influence the relationship between the features and the outcome. A domain expert can 

provide closer look into whether the top features are likely to be causally related to the 

outcome or if they are simply correlated due to other underlying factors. They can also 

help assess if the identified features are practical to measure or collect in real-world 

settings, considering factors such as cost, accessibility, and reliability. 

In cases where the top features identified by the models do not align with domain 

knowledge or expectations, it may indicate the need for further investigation. It could 

suggest the presence of hidden biases, data quality issues, or limitations in the modeling 

approach. Domain experts can guide the refinement of the models, suggest alternative 

features or data sources, and provide valuable context for interpreting the results. 
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