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Abstract 

Wireless capsule endoscopy (WCE) is an advanced imaging technology for the diagnosis of 

patients remotely during gastrointestinal (GI) procedures, thereby improving patient comfort and 

data resolution. The WCE procedure involves a swallowable miniature camera device equipped 

with light emitting diodes (LEDs) to record images of the GI tract. These images are then 

transmitted to gastroenterologists to examine the images to identify clinical conditions or 

abnormalities such as polyps, lesions, or bleeding, thereby facilitating diagnostic evaluations. The 

recorded images have a significant amount of redundancy, along with low-resolution or unclear 

features which need to be removed to extract useful information from the recorded images. A 

number of deep learning models have been developed for automated detection of polyps and 

ulcers, each having their benefits and drawbacks. Colorectal polyps exhibit diverse shape, texture, 

and color features even within a single patient's video, complicating the task of recognizing polyps 

and ulcers. Here we review the deep learning models for the detection and segmentation of polyps 

and ulcers from WCE recorded videos, the challenges involved in data segmentation and image 

processing, and future outlook in automated polyp and ulcer detection. 

 

 

Introduction 

Video capsule endoscopy (VCE) is an advanced imaging method employed for visualizing 

the gastrointestinal (GI) tract and associated clinical conditions [1-5]. Compared to tethered 

endoscopy, VCE offers portability and ease of use, making it particularly valuable for remote 

monitoring healthcare services. It involves the use of a swallowable miniature camera device 

equipped with light emitting diodes (LEDs) to capture digital photographs of the GI tract [5-7]. 

These images are then transmitted to a portable recording device for post-analysis. 

Gastroenterologists examine the images to identify abnormalities such as polyps, lesions, or 

bleeding, thereby facilitating diagnostic evaluations. A typical VCE recording session generates 

over 50,000 images over a duration of eight to ten hours, making the manual analysis process very 

time consuming [1-3]. Therefore, the development of an efficient and accurate automatic detection 

method would alleviate the workload for medical experts. The processing of the vast amount of 

video data generated during VCE procedures requires substantial computational resources for 

analysis and retrieval of pertinent video frames. To manage the extensive video data produced by 
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VCE, it is essential to leverage the techniques deployed in image processing, computer vision, and 

machine learning [6-16].  

 

Wireless capsule endoscopy 

 

Wireless capsule endoscopy (WCE) facilitates the diagnosis of patients remotely, thereby 

improving their healthcare accessibility and patient comfort during the procedure. This 

swallowable technology is primarily designed to offer diagnostic imaging of the entire digestive 

tract. Within WCE, patients ingest a pill-sized capsule containing a miniature camera, light source, 

RF transmitter, and batteries. As the capsule traverses the gastrointestinal (GI) tract propelled by 

normal peristalsis, it records visual footage. These captured frames are transmitted via a small 

wireless sensor device to a portable receiver positioned outside the body. Presently, wireless 

capsule batteries typically endure around eight hours, generally sufficient for comprehensive GI 

imaging. Although most capsules are naturally expelled within 72 hours, the initial eight-hour 

period is crucial for capturing GI visuals. Consequently, a standard WCE procedure lasts 

approximately eight hours, yielding an average of 50,000 image frames at a rate of two frames per 

second. The visualization of the GI tract empowers physicians to identify diseases in their early 

stages. Moreover, the data gathered from remote patient monitoring using body sensors equips 

doctors to promptly address any anomalies and implement suitable interventions. 

 

Wireless capsule endoscopy serves as a valuable complement to colonoscopy in non-

invasively diagnostics of the digestive system. WCE can either complement incomplete 

colonoscopies or serve as an investigative tool to assess the necessity for therapeutic colonoscopies 

or surgery [10-21]. The invasive nature of traditional colonoscopy may lead to discomfort and 

undesired side effects, potentially impacting acceptability and causing diagnostic delays; initiating 

with a capsule study could mitigate some of these concerns. While severe complications following 

colonoscopies are rare in screening programs, the relatively significant number of investigations 

with relatively few positive findings raises concerns. Colon capsule endoscopy (CCE) proves 

particularly beneficial for patients with prior incomplete colonoscopy attempts. CCE may 

complement an unfinished colonoscopy investigation by capturing the furthest point reached in 

the previous attempt. As the capsule traverses the intestine, it captures frames transmitted 

wirelessly to a mobile receiver. The portability of these CCE systems allows patients to maintain 

their regular daily activities without being confined to medical facilities. Studies demonstrate that 

capsule-based endoscopy aids in detecting several clinically relevant features in the GI tract, 

including intestinal bleeding, ulcers, vascular lesions, inflammatory diseases, polyps, tumors, and 

cancers [16-22]. 

 

Wireless capsule endoscopy (WCE) videos contain substantial redundant data, with only a 

fraction being diagnostically useful or informative [1-4]. The capsule's camera captures mucosal 

images across various scales and orientations, leading to redundancy in the data. Non-informative 

image frames can arise from exposure to turbid fluids and food particles. Consequently, extraction 

of key information from the recorded videos (i.e., video summarization) becomes crucial in WCE 

to address the challenges of storage and efficient browsing posed by the large, unrefined dataset. 

Video summarization offers a practical solution, saving transmission costs and reducing the time 

required for doctors to review patient information. However, implementing high-level signal 
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processing solutions like video summarization directly on wireless WCE is impractical due to its 

limited memory, energy, and computational capabilities. Additionally, transmitting extensive 

video data before processing is unfeasible due to its high energy consumption [23-30]. Analyzing 

WCE videos on local servers, such as smartphones, is a viable alternative. Smartphones, with their 

advanced hardware and operating systems, serve as excellent platforms for performing low-level 

computer vision tasks and acting as WCE-coordinators. Their portability enables patients wearing 

wireless sensors to engage in outdoor activities, making them ideal for remote monitoring 

solutions. A visual attention-based WCE video summarization scheme has been proposed, 

leveraging the integral-image concept for efficient computation of visual saliency, suitable for 

smartphones. However, smartphones' limitations in computing power, energy supply, and storage 

hinder their ability to support long-duration remote monitoring applications. Mobile-cloud 

computing emerges as a solution to overcome these constraints, enabling the generation of video 

summaries and deploying cost-effective pervasive healthcare systems [29-35]. 

 

Convolutional Neural Networks (CNNs) 

 

Medical image analysis benefits greatly from the application of deep learning tools. Deep 

learning has proven its efficacy in automating disease diagnosis, thereby enhancing medical image 

examination. This advancement in medical image analysis helps clinicians and healthcare 

professionals with improved capabilities for early disease detection, potentially helping with 

prognosis and formulation of effective treatment strategies. In the realm of medical imaging, 

several deep learning models have been developed and deployed. Among these, convolutional 

neural networks (CNNs) are capable of automatically extracting high-level features from multi-

dimensional data with remarkable accuracy. CNNs possess the versatility to process data in diverse 

forms, including signals, images, and videos, thereby offering comprehensive solutions in medical 

image applications [24-33]. 

 

Typically, a Convolutional Neural Network (CNN) architecture comprises three types of 

layers: convolutional, pooling, and fully connected layers [6, 34-42]. CNN layers organize neurons 

in three dimensions—width, height, and depth. Each layer in a CNN transforms a 3D input volume 

into a 3D output volume of neuron activations. Notably, not all neurons in one layer need to be 

connected to all neurons in the next layer. The input data undergoes sequences of convolutions 

and pooling operations using filters to generate feature maps, which are then combined to produce 

the final output of the convolutional layer. This layer is regarded as the fundamental building block 

of a CNN and consequently contributes to the time-consuming training process. Within these 

layers, a convolution operation is applied to compute neuron outputs, with the parameters of 

convolutional layers sharing sets of weights. The pooling layers utilize nonlinear down-sampling 

techniques, with max pooling being a popular choice. In max pooling, the input is divided into 

non-overlapping groups, and the maximum value within each group becomes the output [6]. Max-

pooling layers effectively reduce the number of parameters, mitigate the risk of overfitting, and 

lessen the computational complexity of the network. Hence, a max-pooling layer is commonly 

inserted between convolutional layers. 

 

Several pretrained CNN models are available in the literature, such as AlexNet, VGGNet, 

GoogleNet, and ResNet. Among these, GoogleNet and AlexNet are frequently employed for 
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feature extraction and classification, delivering excellent results. Pretrained networks are fine-

tuned by freezing the weights of the initial layers during system training, while the fully connected 

layers, responsible for mapping the feature representations into class label information, undergo 

fine-tuning [33-40]. 

 

Automatic Polyp Detection Techniques 

 

Various automatic polyp detection algorithms have been proposed, each with its level of 

success and model accuracy [10-21]. While the field of polyp detection in colonoscopy and 

traditional endoscopy images is advancing, detecting polyps automatically in Video Capsule 

Endoscopy (VCE) presents unique challenges due to its distinct imaging characteristics. Here, we 

examine the different approaches to polyp detection in VCE imagery and highlight the challenges 

faced by conventional image processing and computer vision methods. Detecting polyps in VCE 

imagery stands as a key challenge in developing automated computer-aided detection and 

diagnosis systems [5-9]. Physicians typically characterize polyps based on their distinctive shapes, 

colors, and textures, which can often resemble shades of red or rose and exhibit textures akin to 

the human brain. In colonoscopy imagery, polyp detection approaches encompass utilizing 

features such as elliptical shapes, texture, color, and position features. 

 

Polyp detection techniques employed in colonoscopy and Computed Tomography (CT) 

colonography predominantly rely on geometry-based methods [21-38]. However, the unique 

imaging modality of Video Capsule Endoscopy (VCE) necessitates distinct approaches for 

efficient polyp detection across its various frames. While several shape-based schemes have been 

proposed for virtual colonoscopy or CT colonography, most rely on reconstructed surfaces 

representing the colon's interior or specific imaging techniques. In contrast, VCE employs an 

unaided photographic device that moves autonomously, prone to illumination saturation from 

near-field lighting. VCE images markedly differ from those obtained via traditional colonoscopy. 

For instance, liquid content in the lumen section is less in colonoscopy, resulting in more specular 

images. Conversely, VCE images exhibit diffusive mucosa tissue due to the presence of liquid, 

with trash and turbidity hindering mucosal surface visibility. The unaided movement of the capsule 

camera introduces blurring effects, reducing image sharpness, while mucosal tissue color under 

VCE presents peculiar characteristics. Consequently, VCE's sensitivity for detecting colonic 

lesions is lower compared to optical colonoscopy. Although capsule endoscopy effectively detects 

colorectal polyps, especially in the colon, challenges persist in small-bowel and esophageal 

examinations. Advances in sensor and camera technology have improved sensitivity and 

specificity for detecting colorectal polyps, yet increased imaging complexity and higher frame 

rates place a greater burden on gastroenterologists. Thus, the development of efficient, robust 

automatic computer-aided detection and segmentation methods for colorectal polyps is crucial. 

 

The variable lighting and sporadic occurrence of polyps in VCE videos pose challenges in 

devising reliable detection and segmentation methods [3-12]. Polyp detection/segmentation 

methods can be classified into two categories: (a) polyp detection—identifying frames containing 

polyps, without necessarily pinpointing their exact locations within the frame; and (b) polyp 

segmentation—segmenting the mucosal area in frames containing polyps. Polyp detection is more 

challenging due to the rarity of polyp-containing frames, necessitating machine learning-based 
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approaches. Colorectal polyps exhibit diverse shape, texture, and color features even within a 

single patient's video, complicating the task. Despite these challenges, efforts have been made in 

automatic data-driven algorithms for identifying polyp frames. Polyp segmentation is 

comparatively simpler, as algorithms need only analyze individual polyp-containing frames to 

locate and localize polyps [17-21]. 

 

Automatic polyp detection and segmentation is an emerging field that necessitates the 

application of advanced computer vision methodologies, including geometrical primitives, color 

spaces, texture descriptors, feature matching, and robust machine learning components [8-20]. 

Traditional polyp detection methods in colonoscopy imagery often rely on the assumption that 

polyps exhibit high geometrical features, such as well-defined shapes or protrusions from mucosal 

surfaces. Consequently, curvature measures are commonly employed for polyp detection, albeit 

with limited success when applied to Video Capsule Endoscopy (VCE) imagery. Additionally, in 

video sequences, neighboring frames may only provide a partial view of the polyp, with mucosa 

folds presenting similar textures, further complicating detection. Similarly, the color of polyps 

varies within a patient's video and significantly across different patient examinations. 

 

A comprehensive learning framework may incorporate both local and global texture features, 

vascularization, and color information to distinguish polyps [33-45]. However, existing 

approaches encounter challenges such as the presence of debris and bubbles, as VCE exams do 

not require colon cleaning. Robust polyp detection methods must integrate efficient trash and 

bubble detectors to mitigate false positives. An integrated approach that combines motion, 

geometry, color, and texture with a robust machine learning paradigm holds promise for achieving 

reliable and efficient automatic polyp detection in VCE imagery. 

 

Future Outlook of Automatic Polyp Detection  

 

Drawing insights from current polyp detection and segmentation methods provides 

valuable perspectives for the future trajectory of this technology. The recent surge of interest in 

deep learning presents a promising avenue, as neural network-based classifiers trained on vast 

datasets show potential for distinguishing polyp frames from normal frames more effectively [27-

33]. However, deep learning networks typically require extensive training data, particularly labeled 

samples of positive (polyp frames) and negative (normal frames). One potential solution to address 

data imbalance is data augmentation, wherein polyp frames are artificially augmented through 

perturbation. 

 

In the past two years, significant strides have been made in endoscopy image analysis using 

deep learning, alongside other approaches such as deep sparse feature selection [10-23]. 

Establishing a well-defined database with polyp regions marked by expert gastroenterologists is 

crucial for benchmarking and standardizing different methodologies for automatic polyp detection 

and segmentation. Improvements in sensor technology, including novel capsule systems with 

enhanced image resolution, standardized illumination/contrast, controlled capsule speed, and 

variable image capturing mechanisms, hold promise for facilitating automatic image analysis. 

Embedding image analysis within capsule endoscopy imaging systems is an exciting research 

avenue, enabling real-time decision-making by gastroenterologists [1-5]. 
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Despite these advancements, some challenges need to be addressed to provide realistic 

value to patients and medical practitioners [40-47]. In recent years, deep learning has emerged as 

a leading force in automated analysis and recognition, demonstrating significant advancements 

over traditional machine learning algorithms. Deep learning methods are widely regarded as 

credible solutions for automated detection and diagnosis of abnormalities in medical images. 

Future applications of this research will focus on evaluating its clinical feasibility, particularly in 

aiding the localization of significant findings like colorectal polyps, in conjunction with polyp 

detection algorithms, and estimating the completeness of investigations [6, 29-33]. 

 

Future research will also address challenges such as validation and error propagation in 

localization, along with exploring extensions to reconstructing the small intestine using visual-

based processing techniques [9-19]. As neural networks continue to advance in image processing, 

smart image processing holds promise for future applications. Deep learning and smart image 

processing in capsule endoscopy have garnered attention for texture classification, polyp and 

abnormality detection and segmentation, and localization [3-12]. Notable innovation lies in the 

utilization of pretrained CNN models for identifying ulcer regions in Wireless Capsule Endoscopy 

(WCE) images. Models like GoogleNet and AlexNet, pretrained on a subset of the ImageNet 

database, have demonstrated zero classification error and 100% accuracy in detecting ulcers under 

specific network parameter settings, despite limited data availability. 
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